PLEASE CLICK ON THE FOLLOWING LINK TO WATCH THE LECTURE ONLINE:-

https://www.youtube.com/watch?v=OpY s4BF9NnU&list=PLuBRb5B7fa_eyzM A0u7jajzWugcmiRi5s&index=8

Radiographic Evaluation of Musculoskeletal Tumors

Mohammad Al-sarayreh

Staging Studies

- PlainRadiograph
- MRI
- CT scan
- Chest CT
- Bone Scan

Plain Radiographs

Evaluate:

- Rate of tumor growth
- Tumor interaction with surrounding nonneoplastic tissue
- Internal composition of tumor

MRI

- Visualize entire bone and adjacent joint
- Best test for intraosseous extent and soft tissue extent
- Identify skip metastases
- Tumor proximity to neurovascular structures
- Occasionally helpful in diagnosis of bone or soft tissue tumors (experienced radiologist)

TABLE 1. MRI signal intensities of various tissues

Tissue	Image	
	T1-weighted	T2-weighted
Hematoma	High	High
Fat, fatty marrow	High	Intermediate
Muscle, nerves, hyaline cartilage	Intermediate	Intermediate
Cortical bone, tendons, ligaments, fibrocartilage, scar tissue, air	Low	Low
Hyaline cartilage	Intermediate	Intermediate
Red (hematopoietic) marrow	Low	Intermediate
Fluid	Intermediate	High
Tumors (generally)	Intermediate-to-low	High
Lipoma	High	Intermediate
Hemangioma	Intermediate (slightly higher than muscle)	High

CT

- Good for evaluating cortical details and destruction
- Subtle cortical erosions

 (endosteal;periosteal) not detectable on plain x-ray or MRI
- Subtle calcifications / ossification (Visible tumor matrix mineralization)

Pain Radiographs

- The next three slides demonstrates how plain radiographs should be utilized to evaluate a bone tumor
- There are specific characteristics that should be identified on plain radiographs that aid in the differential diagnosis of a bone tumor

Plain Radiographs

- Bone involved
- Is involved bone normal?
- What part of the bone?
- Open or closed growth plate
- Epicenter of lesion (cortex or medullary canal)
- Tumor contour and zone of transition between tumor and host bone

Plain Radiographs

- Mineralized matrix?
- Cortical destruction?
- Periosteal reaction? What type
- Involvement of joint space?
- Tumor multifocal?
- Is tumor of uniform appearanceor does it have several different components?

Radiographic Evaluation

- Bone Involved and Position in the Bone
- Pattern of Bone Destruction
 - Geographic, Permeative, Moth Eaten
- Margin of the Lesion
- Presence of Visible Tumor Matrix (Calcification/Ossification)
- Internal Trabeculations
- Cortical Erosion, Penetration, Cortical Expansion
- Periosteal Response
 - Continuous or Interupted

Patterns of Bone Destruction

- Geographic
- **Motheaten**
- Permeative

Geographic Bone Destruction

- Least Aggressive Pattern
- Slow Growing Lesion-Usually Benign
- Clearly Demarcated Lesion
 - Clearly Delineated Borders of Lesion
- Narrow Zone of Transition between Tumor and Normal Bone
- May have Sclerotic Margin
- Thicker Sclerotic Margin is Less Aggressive
- No Surrounding Sclerosis means more Aggressive/Faster Growing

Geographic Bone Destruction

Giant Cell Tumor

Geographic Bone Destruction

- **Types of Margins Around Lesion**
 - IA (Thick Complete Sclerotic Margin)
 - **Indolent Lesion**
 - **IB** (Thin and Incomplete)
 - **Active Lesion**
 - **■IC** (No Sclerotic Margin)
 - **Aggressive Lesion**

IA

IA-Non Ossifying Fibroma

IB—Giant Cell Tumor

IC

IB/IC

Motheaten Bone Destruction

- More Aggressive Bone Destruction
- Less Well DefinedMargins
- Larger Zone of TransitionFrom Normal to Abnormal(Tumor)
- Multiple Punched Out Holes in the Bone
- Malignant Bone Tumors,Osteomyelitis, EosinophilicGranuloma

Motheaten Bone Destruction

Permeative Bone Destruction

- Aggressive Lesion
- Rapid Growth Potential
- Poorly Demarcated and May Merge Imperceptibly with Uninvolved Bone
- Can Not DelineateWhere Tumor Begins and Ends
- Tumor Not ClearlyDemarcated From NormalBone
- Malignant Bone Tumors (Ewings sarcoma;Osteosarcoma),

Permeative Bone Destruction Lymphoma

Visible Tumor Matrix

- Calcification
 - Stippled, Flocculent, Rings and Arcs
- Ossification
 - Solid, Cloud-Like, Ivory-Like
- Must Differentiate Mineralization from Calcification Due to Dead or Necrotic Tissue, Fracture Callus (Pathologic Fracture), Sclerotic Response of Non-Neoplastic Bone to Adjacent Tumor Deposit

Visible Tumor Matrix

- Calcification
 - Rings, Arcs, Flocculent, Fleck-like
 - Cartilage Tumors
 - **Enchondroma**
 - Chondrosarcoma
 - Chondroblastoma
 - Chondromyxofibroma

Visible Tumor Matrix

- Cartilage grows in a lobular manner or in a ball like manner
- Calcification occurs around the periphery of these lobules
- If the calcification occurs completely around the periphery (circumference) it forms a circle or a Ring of calcification that is detectable on the Xray
- If the calcification occurs only partially around the lobule, it forms only part of a circle or an Arc that is detectable on the Xray

Cartilage Matrix

Stippled

Flocculent

Rings and Arcs ("o"'s and "c"'s)

A

Enchondroma or Low Grade Chondrosarcoma

Intraosseous Lipoma

Dedifferentiated Chondrosarcoma

Rings and Arcs Calcifications

Lytic Destruction by Dedifferentiated Component

Rings and Arcs

Visible Tumor Matrix

- Ossification
 - -Cloudlike, Fluffy, Marble-like
 - Osteosarcoma
 - Parosteal Osteosarcoma
 - Osteoblastoma
 - Osteoma

Periosteal Osteosarcoma

Periosteal Osteosarcoma CT Scan

Conventional Intramedullary Osteosarcoma

Conventional Intramedullary Osteosarcoma

Marble-Like Ossification Osteosarcoma

Parosteal Osteosarcoma

Parosteal Osteosarcoma

Parosteal Osteosarcoma CT Scan

Parosteal Osteosarcoma

Parosteal Osteosarcoma CT Scan

Internal Trabeculations

- Residual Trabeculae or New Bone Formation Due to Adjacent Tumor
- Differential Diagnosis:
- Giant Cell Tumor
- Chondromyxofibroma
- Desmoplastic Fibroma
- Nonossifying Fibroma
- Aneurysmal Bone Cyst
- Hemangioma

Giant Cell Tumor

Desmoplastic Fibroma

Chondromyxofibroma

Nonossifying Fibroma

$H_{H}e_{e}m_{m}a_{a}n_{n}g_{g}i_{i}o_{o}m_{m}a_{a}$

ABC

Cortical Erosion, Expansion, Penetration

- Bone Cortex Can Be an Effective Barrier To Tumor Growth of Certain Tumors
- Certain Tumors Penetrate the Cortex Partially or Completely (Benign and Malignant)
- Progressive Endosteal Erosion that is Accompanied by a Periosteal Reaction Leads to an ExpandedBony Contour (Like an ABC)
- Aggressive lesion that Penetrates the entire Cortex or Penetrates Haversian Canals will Elevate the Periosteum and Lead to a Periosteal Reaction

Cortical Erosion, Expansion, Penetration

It is important to understand that both benign and malignant tumors can penetrate the cortical bone and form a soft tissue mass. The fact that there is a soft tissue mass does not automatically confer that the tumor is malignant. Certain benign tumors can also form a soft tissue mass. The periosteum usually remains intact around a benign soft tissue mass. This may only be detectable on a CT scan demonstrating an "Egg-Shell" rim of calcification around the periphery of the mass. The periosteum is usually destroyed by malignant tumors and does not remain intact around the soft tissue component of a malignant tumor.

Periosteal Reactions as Related to Tumor Growth

Periosteal Response

- Benign: Buttressing Pattern; Single Lamellar; Cortical Thickening; Bony Expansion
 - Endosteal Erosion Leads to Periosteal Proliferation
 - Can Be Same or Diminished Thickness
 Compared to Normal Cortex
 - Buttressing: Interface Between Normal and Expanded Cortex is Filled In with Bone

Buttressing

Buttressing

Periosteal Response

- Malignant Tumors: Rapid Tumor Growth May Lead to Single or Multiple Concentric Layers
- **Types of Malignant Periosteal Reactions:**
 - Onion Skin: Multiple Concentric layers
 - Codman's Triangle: Occurs at the Periphery of a Lesion or Infective Focus
 - Sun Burst: Delicate Rays that Extend Away from the Bone (Angled with Bone)
 - Hair On End: Rays are Perpendicular to Bone

Onion Skin Appearance

$O_O n_n i_i o_o n_n Skin$

Codman's Triangle

Codman's Triangle

CT Scan of Codman's triangle

Sunburst Pattern

Sunburst Pattern

Hair On End

Hair on End Periosteal Reaction

Soft Tissue Mass

- Primary Malignant Bone Tumors
- Benign Aggressive Bone Tumors
- Mets
- Osteomyelitis

Benign Aggressive Tumor

Periosteum Intact Around Periphery of Soft Tissue Mass

Benign Aggressive Giant Cell Tumor

Periosteum Intact Around Periphery

Malignant-- Osteosarcoma

Periosteum Not Intact Around Soft Tissue Mass

MRI of Osteosarcoma Periosteum Not Intact Around Soft Tissue Mass

Distribution in Bone

- **Position in Transverse Plain**
 - Central
 - Eccentric
 - Cortical
 - Juxtacortical (Periosteal/Parosteal)
 - Soft Tissue Location

Central Axis

- **Enchondromas**
- Fibrous Dysplasia
- Simple Bone Cysts

UBC

Fibrous Dysplasia

Enchondroma

Eccentric Lesions

- **Giant Cell Tumor**
- Osteosarcoma
- Chondrosarcoma
- Chondromyxofibroma

GC

Osteosarcoma

Osteosarcoma

Osteosarcoma

Chondrosarcoma

Chondromyxofibroma

Cortical Lesions

- NonossifyingFibromas
- Osteoid Osteomas

Nonossifying Fibroma

Brodie's Abscess

Brodie's Abscess

Brodie's Abscess

Juxtacortical Lesions

- Juxtacortical Chondroma
- Periosteal
 Osteosarcoma/Chondrosarcoma
- Parosteal Osteosarcoma

Periosteal Chondroma

Osteochondroma

Osteochondroma Cortico-Medullary Continuity

Surface Osteoma

Myositis Ossificans

Myositis Ossificans Zonal Phenomenon—Central Lucency

Melorrheostosis "Candle Wax Drippings" C:-7/6.9, W

Position of Lesion in Longitudinal Plane

- Epiphysis
- Metaphysis
- Diaphysis

Epiphyseal Lesions

- Adults:
 - Clear Cell Chondrosarcoma
 - Metastasis, Myeloma,Lymphoma
 - Lipoma
 - Intraosseous Ganglion

Epiphyseal Lesions

- Children:
 - Chondroblastoma
 - Osteomyelitis
 - Osteoid Osteoma
 - Enchondroma
 - Eosinophilic Granuloma

Metaphyseal Lesions

- GCT (extends to epiphysis)
- Nonossifying Fibroma
- Chondromyxoid Fibroma
- Simple Bone Cyst (Unicameral Bone Cyst)
- Osteochondroma
- Brodie's Abscess
- Osteosarcoma
- Chondrosarcoma
- MFH/Fibrosarcoma

Diaphyseal Lesions

- Ewing's Sarcoma
- Nonossifying fibroma
- Simple Bone Cysts
- Aneurysmal BoneCysts
- Enchondromas
- Osteoblastomas
- Fibrous Dysplasia
- Adamantinoma
- Osteofibrous

Epiphyseal Equivalent Areas

- Subchondral Regions of Acetabulum and Scapula
- Tarsal Bones
- Calcaneus, Talus

Mature Skeleton (Growth Plate Closed)

- Heamatopoietic Marrow—predilection for sites with red marrow; rich sinusoidal vasculature
- Axial and Appendicular Skeleton in Children
- Axial Skeleton in Adults
 - Metastatic Disease
 - Myeloma
 - Ewing's Sarcoma
 - Histiocytic Lymphoma

- Areas of Rapid Growth
- Primary Bone Tumors
 - Distal Femur
 - Proximal Tibia
 - Proximal Humerus

Sacrum

- Chordoma
- Myeloma/Plasmacytoma
- Giant Cell Tumor
- Mets
- Simple Cysts
- Neurogenic Tumors/Schwannoma

Ribs

- Mets
- FibrousDysplasia
- Enchondroma

- Metacarpals and Phalanges
 - Giant Cell Tumor
 - Giant Cell Reparative Granuloma
 - Sarcoidosis
 - ABC
 - Fibrous Dysplasia
 - Enchondroma

- Terminal Phalanges
 - Inclusion Cyst
 - Glomus Tumor
 - Mets (Lung)