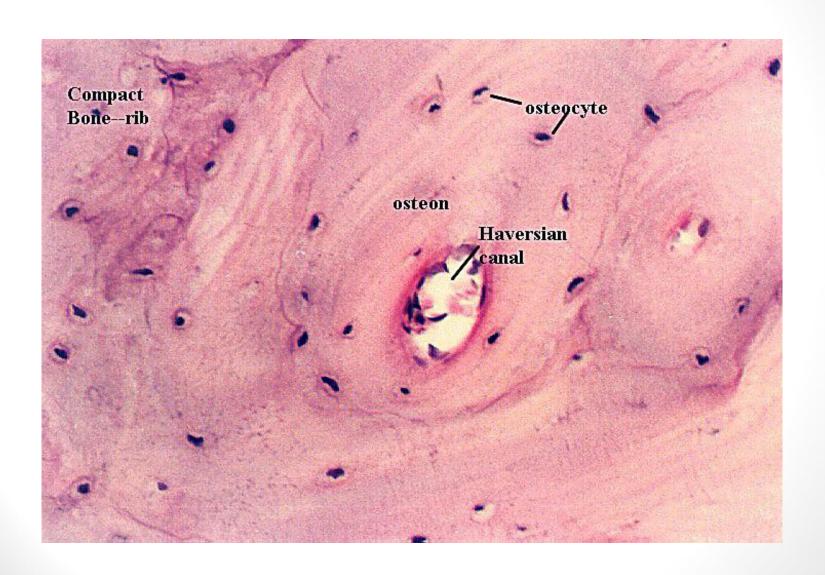
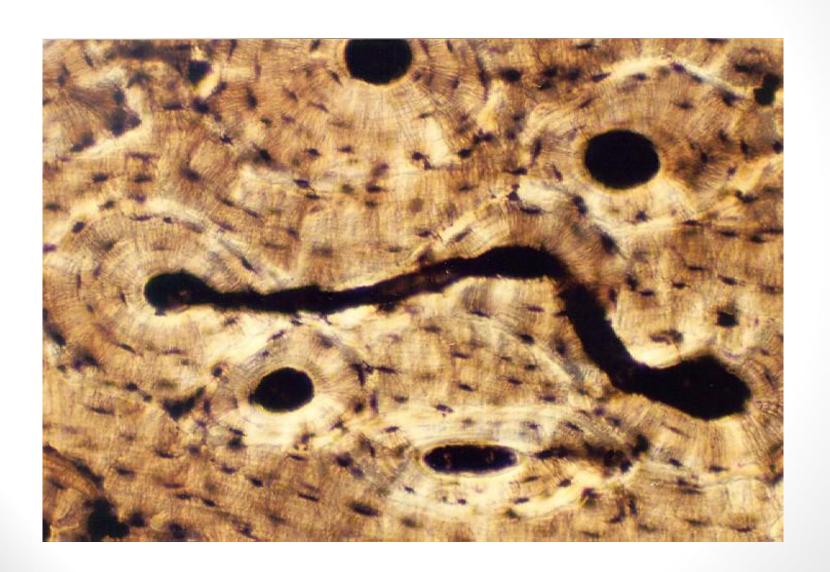

PLEASE CLICK ON THE FOLLOWING LINK TO WATCH THE LECTURE

ONLINE:-


https://www.youtube.com/watch?v=rK2-ikS0-Yg&list=PLuBRb5B7fa_eyBVgz4xb_AqlGcXLIEyRA&index =17

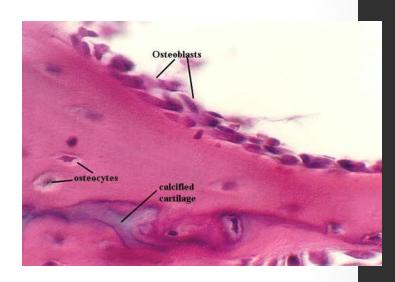

Biology of bone healing

MOHAMMAD ALSAAIDEH

Osteons (Haversian systems) in compact bone and trabeculae in spongy bone 06.03

Bone Composition

Cells

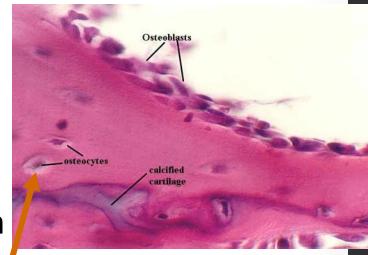

- Osteocytes
- Osteoblasts
- Osteoclasts

Extracellular Matrix

- Organic (35%)
 - Collagen (type I) 90%
 - Osteocalcin, osteonectin, proteoglycans, glycosaminoglycans, lipids (ground substance)
- Inorganic (65%)
 - Primarily hydroxyapatite Ca₅(PO₄)₃(OH)₂

Osteoblasts

- Derived from mesenchymal stem cells
- Line the surface of the bone and produce osteoid
- Immediate precursor is fibroblast-like preosteoblasts



Picture courtesy Gwen Childs, PhD.

Osteocytes

 Osteoblasts surrounded by bone matrix

- trapped in lacunae
- Function poorly understood
 - regulating bone metabolism in response to stress and strain

Picture courtesy Gwen Childs, PhD.


Osteocyte Network

- Osteocyte lacunae are connected by canaliculi
- Osteocytes are interconnected by long cell processes that project through the canaliculi

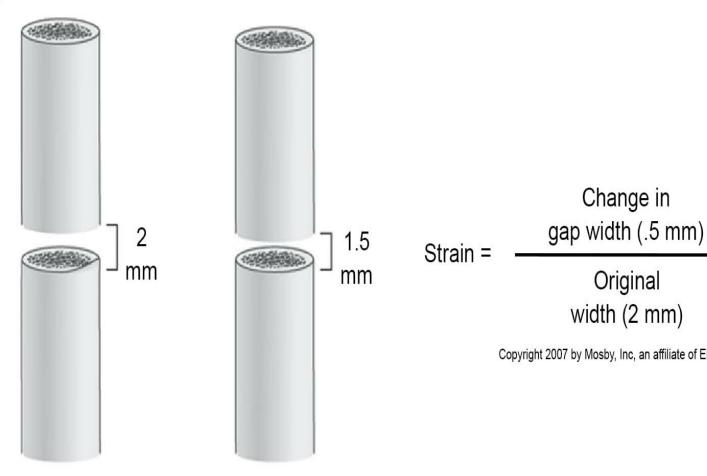
 Network probably facilitates response of bone to mechanical and chemical factors

Osteoclasts

- Derived from hematopoietic stem cells (monocyte precursor cells)
- Multinucleated cells whose function is bone resorption
- Reside in bone resorption pits (Howship's lacunae)
- Parathyroid hormone stimulates <u>receptors on</u> <u>osteoblasts</u> that activate osteoclastic bone resorption

Picture courtesy Gwen Childs, PhD.

The healing potential of bone is influenced by a variety of biochemical, biomechanical, cellular, hormonal, and pathological mechanisms.


Prerequisites for Bone Healing

- Adequate blood supply
- Adequate mechanical stability

 Fracture stability dictates the type of healing that will occur

mechanical stability governs the mechanical strain

Strain

Copyright 2007 by Mosby, Inc, an affiliate of Elsevier Inc.

= 25%

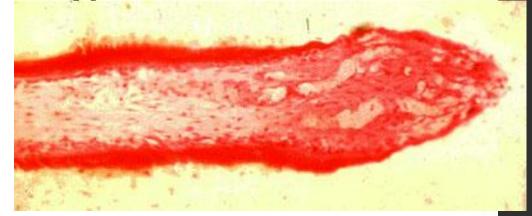
Original width = 2 mm

Width after load = 1.5 mm

Modes of bone healing

primary bone healing (strain is < 2%)

Secondary bone healing (strain 2% - 10 %)


Primary bone healing

contact healing (cutting cones)

Gap healing

Cutting Cones

- Primarily a mechanism to remodel bone
- Osteoclasts at the front of the cutting cone remove bone
- Trailing osteoblasts lay down new bone

Courtesy Drs. Charles Schwab and Bruce Ma

Primary bone healing

- Intramembranous Bone Formation
 - Mechanism by which a long bone grows in width
 - Osteoblasts differentiate directly from preosteoblasts and lay down lines of osteoid
 - Does NOT involve cartilage anlage

Primary bone healing

occurs via Haversian remodeling

occurs with absolute stability constructs

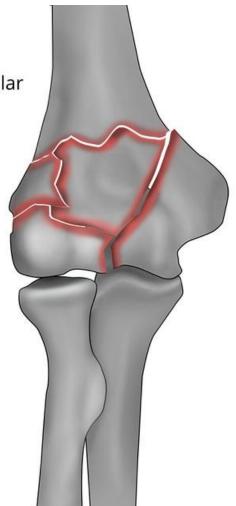
 occurs with non-rigid fixation, as fracture braces, external fixation, bridge plating, intramedullary nailing, etc.

- ENCHONDRAL BONE HEALING
 - Mechanism by which a long bone grows in length
 - The chondrocytes hypertrophy, degenerate and calcify (area of low oxygen tension)
 - Vascular invasion of the cartilage occurs followed by ossification (increasing oxygen tension)

Inflammation

Repair

Remodelling


- Inflammation
- Hematoma forms and provides a source of hematopoietic cells capable of secreting growth factors.
- fibroblasts and mesenchymal cells migrate to fracture site and granulation tissue forms around fracture ends

- Repair
- Primary callus forms within two weeks
- endochondral ossification converts soft callus to hard callus
- Cartilage production provides provisional stabilization
- Type II collagen (cartilage) is produced early in fracture healing and then followed by type I collagen (bone)

- Remodelling
- Begins in middle of repair phase and continues long after clinical union
- Newly formed bone (woven bone) is remodeling via organized osteoblastic/osteoclastic activity

 Inadequate stabilization may result in excessive deformation at the fracture site interrupting tissue differentiation to bone. bone healing may occur as a combination of the above two process depending on the stability throughout the construct C2

Complete articular Fragmentary metaphyseal

FACTORS AFFECTING FRACTURE HEALING

- blood supply
- initially the blood flow decreases with vascular disruption
- after few hours to days, the blood flow increases
- this peaks at 2 weeks and normalizes at 3-5 months
- un-reamed nails maintain the endosteal blood supply

Hormones

Estrogen

Stimulates fracture healing through receptor mediated mechanism

Thyroid hormones

Thyroxine and triiodothyronine stimulate osteoclastic bone resorption

Glucocorticoids

 Inhibit calcium absorption from the gut causing increased PTH and therefore increased osteoclastic bone resorption

Hormones (cont.)

- Parathyroid Hormone
 - Intermittent exposure stimulates
 - Osteoblasts
 - Increased bone formation
- Growth Hormone
 - Mediated through IGF-1 (Somatomedin-C)
 - Increases callus formation and fracture strength

Local Anatomic Factors That Influence Fracture Healing

- Soft tissue injury
- Interruption of local blood supply
- Interposition of soft tissue at fracture site
- Bone death caused by radiation, thermal or chemical burns or infection

- Diet
- nutritional deficiencies
- vitamin D and calcium
- as high as 84% of patients with nonunion were found to have metabolic issues
- greater than 66% of these patients had vitamin D deficiencies

- Diabetes mellitus
- affects the repair and remodeling of bone
- decreased cellularity of the fracture callus
- delayed endochondral ossification
- diminished strength of the fracture callus

 fracture healing takes 1.6 times longer in diabetic patients versus non-diabetic patients

- nicotine
- decreases rate of fracture healing
- inhibits growth of new blood vessels as bone is remodeled
- increase risk of nonunion (increases risk of pseudoarthrosis in spine fusion by 500%)
- decreased strength of fracture callus
- smokers can take ~70% longer to heal open tibial shaft fractures versus non-smokers

- bisphosphonates are recognized as a cause of osteoporotic fractures with long term usage
- recent studies demonstrated longer healing times for surgically treated wrist fractures in patients on bisphosphonates

 long term usage may be associated with atypical subtrochanteric/femoral shaft fractures

•

systemic corticosteroids

 studies have shown a 6.5% higher rate of intertrochanteric fracture non unions

- NSAIDs
- prolonged healing time becaue of COX enzyme inhbition

- quinolones
- toxic to chondrocytes and diminishes fracture repair

Low Intensity Pulsed Ultrasound (LIPUS)

- exact mechanism for enhancement of fracture healing is not clear
- alteration of protein expression
- INCREASE in vascularity
- accelerates fracture healing and increases mechanical strength of callus

THANK YOU